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ABSTRACT
This paper presents the results of parallel simulations of
mixed networks using the ns-3 simulator. The simulated
networks consist of equal number of simple (leaf) nodes and
router nodes, which form a small-world network. The active
channels in the simulations link pairs of nodes with sym-
metric source and sink applications. All network traffic is
restricted to a single-hop communications. The network par-
titioning among MPI ranks is accomplished using METIS
library.

The performance and scalability of the ns-3 network simu-
lator is examined using a variety of metrics, e.g. memory
footprint, packet transmission rate, and runtime statistics.
Empirical relations are derived for the memory scaling. Fur-
ther avenues are identified for improvement of the parallel
ns-3 simulator.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—network communications, network
topology ; C.2.2 [Computer-Communication Networks]:
Network Protocols—applications, routing protocols; D.2.8
[Software Engineering]: Metrics—performance measures

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
High performance computing, MPI, Network simulation, ns-
3, Parallel architecture, Performance

1. INTRODUCTION
ns-3 is a discrete-event network simulation framework de-
signed to model realistic computer networks [6]. The sim-
ulator compares favorably with other existing network sim-
ulation tools [9]. Recently, it has incorporated a parallel

∗Corresponding author.

scheduler [7], giving ns-3 the capability to run distributed
network simulations using MPI. Performance of the single-
threaded ns-3 network simulator was evaluated in [9] (and
references therein). Here we examine the performance met-
rics for the parallel version of the simulator.

The parallel scheduler in ns-3 is a straightforward global
conservative scheduler, using MPI for communication be-
tween ns3 processes (ranks). The implementation allows the
topology to be partitioned at simulated point-to-point (P2P)
channels only; CSMA and wireless links may not cross rank
boundaries. At the same time, each rank must have the full
topology available.

The use of remote P2P links is handled by the PointTo-

PointHelper, which detects that a P2P link crosses ranks,
attaches a PointToPointRemoteChannel and an MpiReceiver

object to the PointToPointNetDevice on each side of the
link. To transmit a packet, the packet is serialized over the
MPI link along with the receive time and destination node
index and device index. (The destination node here is the
other end of the P2P link, not the ultimate packet destina-
tion.) On the receiving side, the same data is deserialized
and used to schedule the receive event for the destination
node.

At initialization, each rank independently walks the topol-
ogy to determine the smallest cross-rank P2P channel delay;
this becomes the scheduler look-ahead, LA.

When a rank has no more events within the LA time, it
enters a synchronization phase. It is guaranteed that all
ranks will eventually exhaust their executable events and
enter the synchronization phase. During this phase, the
rank receives any outstanding messages, which will all be for
events beyond the LA time. All ranks exchange messages
containing the number of transmitted and received pack-
ets, and the time stamp of the next available event, using
MPI ALLGATHER. To check for transient (not yet deliv-
ered) MPI messages, each rank computes the total number
of received and transmitted events. If these are unequal,
indicating undelivered messages still exist, then the syn-
chronization phase restarts. Once all messages have been
received (events received equals events transmitted) each
rank computes the global minimum next event time stamp
(lower bound time stamp, LBTS), and adds the look-ahead,
to obtain the maximum time stamp which is safe to pro-
cess, called the granted time. The scheduler then proceeds



to process any events scheduled before the end of granted
time. Because all ranks compute the same look ahead, the
simulation effectively runs time-synchronous, with each rank
processing events in the same look-ahead-sized virtual time
window.

In addition to the restrictions noted above, the current im-
plementation only transmits the receive time, the node index
and device index, and any packet data. Packet and byte tags
are not transmitted, nor is packet metadata, which is used
to interpret the packet contents correctly.

In [3], we outlined a standard benchmark model for eval-
uating the performance of the distributed ns-3 simulator.
In this paper, we present the results of distributed network
simulations, developed under Livermore Computer Network
Simulation Program. [4] We focus specifically on very large
models (104−6 nodes) with a large amount of available par-
allelism, and want to benchmark highly distributed imple-
mentations running on up to 103 computing cores. The scal-
ing relations are derived in terms of both memory footprint
and performance metrics. After reviewing the performance
metrics, we demarcate the limits of ns-3 parallel network
simulation on distributed architectures and suggest poten-
tial avenues for its further improvement.

2. SIMULATED NETWORKS
The network topology and the choice of parameters for the
benchmark models are motivated by the considerations in
previous work. [3] In particular, to isolate the true perfor-
mance metrics from routing and congestion effects, we con-
sider network traffic between nearest neighbor nodes only
(i.e. there is effectively no routing, as no packets are retrans-
mitted from the receiving interface on to sending interface
on the same router).

The simulated networks consist of equal number of simple
(leaf) nodes and router nodes (Figure 1). The router nodes

Figure 1: An example network topology used in
the simulations, employing equal numbers of router
nodes (filled circles) and simple nodes (open circles).
The router nodes form a small-world network.

form a small-world network, generated by a Watts-Strogatz

Figure 2: Connectivity diagram for application pairs
residing on active channels.

algorithm with average node degree k = 4 and rewiring prob-
ability β = 0.5. The small-world network topology for router
nodes was chosen to approximate a realistic internet back-
bone router network. In addition, each router in the simu-
lation is connected to a single leaf node. The router-router
connections are point-to-point (P2P) links, while router-leaf
connections are CSMA. For the total number of nodes N in
the network, the number of the P2P links is Nk/4, and the
number of CSMA links is N/2. The total number of avail-
able channels in the network is thus Lmax = N/2(1+k/2) =
3N/2. The number of active (i.e. traffic-exchanging) chan-
nels is L < Lmax.

To simulate network traffic, we install cross-wired pairs of
applications on randomly selected nodes in the network (see
Figure 2). The applications can reside on either leaf or
router nodes, with the only constraint that the nodes are di-
rectly connected. This ’single-hop’ traffic constraint removes
contaminating effects of queueing delays and limited model
network bandwidth on the performance metrics. Each pair
of applications includes the source (OnOffApplication) and
sink (PacketSink), both of which are taken from the stan-
dard set of ns-3 applications. The cross-wired connections
result in channels that are symmetric and bi-directional.

Every OnOffApplication in the network generates packet
traffic at the same rate of 5 Kbps (equal duration for On and
Off intervals). The traffic is modeled by TCP/IP packets
(TcpSocketFacory), with the packet size of 500 bytes.

All channels in the simulation, regardless of type (CSMA or
P2P), have the same data rate of 100 Mbps. The link delay
on each channel is a random parameter, uniformly sampled
from the interval [2, 12] ms. Nix vector routing is used for
the routing protocol.

All simulations run for 200 seconds, virtual time. To study
potential delays due to route discovery, the application startup
times are staggered, with traffic channels activating at ran-
dom times. The channel activation times (OnOffApplication
start times) are uniformly distributed within the initial 100
simulation seconds. All PacketSink applications start at
simulation time zero.

For diagnostic purposes, and to monitor memory usage by
the code (see §3.2), we used the ns-3 trace system to output
messages about the current RSS usage every 5 simulation
seconds. The very limited output (a few kilobytes at most)



was limited to rank 0 process only and did not strain the
I/O system.

Rather than hard-coding the network topology and chan-
nel parameters in a C++ script, the conventional ns-3 way,
the network topology and channel parameters for the sim-
ulations are specified by an XML input file. One proposed
specification for the ns-3 XML format is described in [8].
In this work, we used our own XML spec, described in [2],
to facilitate distributed simulation runs. The partitioning of
the network nodes among the MPI cores is accomplished by
METIS library. [5]

Partitioning random Watts-Strogatz graphs with METIS is
straightforward. For large graphs (N > 103) partitioning
with 1% of the nodes per rank results in rank degree∼ N/10,
i.e. ranks communicate with 10% of all other ranks. This
partitioning avoids all-to-all communication. On the other
hand, the partitioning results in caterpillar graphs on each
MPI rank, with half the links pointing to other ranks. There-
fore half of all packets will be transmitted between ranks over
MPI, providing a good test of the parallel implementation.

2.1 Distributed Simulations
The simulations are performed on a commodity cluster with
1296 total nodes (20736 cores) and 431.3 TFLOP/s theoret-
ical system peak performance. The CPUs are 2.6 GHz Intel
Xeon E5-2670 with InfiniBand QDR interconnect. Each 16-
core node has 32GB shared RAM. The operating system
on the machine is TOSS 2.0, based on CentOS 6/RHEL 6
x86 64. [1]

To compile the ns-3 simulator (ver 3.13), we used openmpi-
gnu-1.4.3 and gcc-4.4.6. The disk I/O used Lustre Parallel
File System with 7GB/s bandwidth and 756TB capacity.
The limited disk I/O by the simulation (see above) did not
affect the bandwidth. All simulations were performed in
batch mode (dedicated node allocation). The nominal run-
time limit for batch jobs is 16 hours (wallclock time).

For a comprehensive study of the performance of the dis-
tributed ns-3 network simulator, we conducted three sets of
distributed simulations, using varying number of MPI cores
and network sizes:

• Set A. Network sizeN ranging from 10K nodes to 100K
nodes, with 10K increments. For each network size,
the number of active channels is L = {0.5N,N, 1.5N}.
Each combination of N and L is modeled using 2, 4,
8, 16, 32, 64, 128, 256 compute ranks. The ranks are
allocated compactly, i.e. a 128 ranks run is allocated
on 128/16 = 8 cluster nodes. For most of these runs,
the RSS (Resident Set Size) memory footprint is small
enough to fit into the 2GB/core and 2 GB/rank.

• Set B, designed to study the performance for very large
networks. In these runs, the network sizes are N =
{100K, 250K, 500K, 750K}. For each network size, the
number of active channels is L = {0.5N,N, 1.5N}.
Due to large memory footprint for these networks, these
runs are allocated using a single compute node per
rank, running on a single core (to have entire 32GB of

RAM available for each rank). The runs in this series
use 2, 4, 8, 16, 32 ranks/nodes.

• Set C, designed to test the simulation performance and
memory scaling for a fixed number of active chan-
nels while letting the network sizes vary. In these
runs, the network sizes are N = {30K, 50K}, and the
number of active channels in the modeled networks is
L = {5K, 10K, 15K}. In this series of runs, we also
wanted to examine the ns-3 performance for a very
large number of ranks, using 2, 4, 8, 16, 32, 64, 128,
192, 256, 384, 512, 768, 1024 ranks. As in run series
A, the compact rank allocation is used for these jobs.

The allocation modes for each set of runs are chosen to ac-
commodate the 32GB RAM limit for cluster nodes. The
smaller networks (up to 100K nodes/channels) can be mod-
eled with multiple MPI processes per node, as the RSS mem-
ory footprint is small enough to fit into RAM. However, for
larger networks (100K nodes/channels and above), the total
available RAM (32GB per node) becomes the limiting fac-
tor, and the simulations must allocate a limited number of
ranks per node to increase the RAM available to each pro-
cess. The 750K node network is the maximum possible for
32GB RAM per node. The memory scaling is described in
detail in §3.2.

In addition to the three main sets of distributed simulations,
we looked at a set of smaller networks (N = {100, 1000}),
at different degrees of parallelization. Our primary finding
with regard to these simulations is the apparent sensitivity of
the simulator to the METIS network partitioning: when the
number of allocated MPI ranks is within a factor of a few of
the number of model network nodes N , the “optimized” net-
work partitioning algorithm may result in some MPI ranks
having zero nodes and applications. This happened, for ex-
ample, for the network simulation with 100 nodes running
100 application pairs on 32 MPI ranks, which has only 3
model nodes per rank, on average, or for the simulations
with 1000 nodes running 1000 application pairs on 128 and
256 ranks. For these cases, the ns-3 simulator exits with
an error. This suggests a simple round-robin paritioning
scheme is more appropriate when the number of MPI ranks
is comparable to the number of nodes in the network.

3. RESULTS
This section summarizes our main findings, in terms of the
simulator performance (packets per unit time) and memory
footprint, and derives the scaling relations.

3.1 Network Performance Metrics
The primary performance metrics for the ns-3 simulator are
the total run time and the packet reception (Rx) rate as a
function of both wall-clock and simulated time.

The total run-time statistic is dominated by the time for
packet traffic. The other components of the run-time (pars-
ing XML files, setting up the simulation, etc) do not con-
tribute significantly to the total run-time. The scaling for
these auxiliary operations is linear with the number of nodes
and active channels in the network. The traffic time metric
is shown in Figure 3 as a function of the number of comput-
ing cores. Note that some of the runs in Figure 3 are missing



Figure 3: Total time modeling packet traffic for se-
lected networks in set A. The color indicates the
network size N , while the point type denotes the
number of active channels in the network, L = 0.5N
(triangles) or L = 1.5N (squares).

(cf. 50K and 60K runs for number of ranks greater than 8).
This is due to the RSS memory footprint of these runs ex-
ceeding 32GB available RAM. In particular, all runs is Set
A for network sizes of 60K nodes and greater can only run
at 2, 4, and 8 core allocations (as their memory footprint is
about 4GB per rank).

The total execution time (packet traffic modeling time) is
a function of not only the respective share of the workload
L/C, where C is the number of ranks, but also the total
number of nodes. This can be seen in Figure 3, by compar-
ing the traffic times for the same L and different N . For
example, the time to run traffic in N = 10K, L = 15K
model (upper blue curve) is well below the corresponding
times for N = 30K, L = 15K model (lower green curve).

Figure 3 suggests that larger networks scale better to large
number of compute cores: the wallclock time for a 40K net-
work is monotonically decreasing all the way to 256 cores,
while the 10K network at 256 cores is showing an increase
in the execution time.

The traffic times for runs in sets B and C are shown in
Figures 4 and 5, respectively. For large network sizes (e.g.
500K nodes in Figure 4), the effect of the wallclock run time
limit (16 hours) manifests itself by removing points at low
number of cores: the code does not finish in 16 hours.

In run set C, the turnover in the total run time is due to in-
creased communication burden among compute cores. The
shape of the curves in Figure 5 suggests there is the most effi-

Figure 4: Total time modeling packet traffic for se-
lected networks in set B. The point types have the
same L/N ratios as in Figure 3.

Figure 5: Total time modeling packet traffic for se-
lected networks in set C. The type of points in-
dicates the number of active channels in the net-
works: L = 5K (triangles), L = 10K (circles), L = 15K
(squares).



cient parallelization level for a fixed size network. This is not
unexpected, as changing the number of ranks available for a
given model size changes the communication/computation
ratio of the model execution. The level is at ∼ 200 cores for
the networks of 30K-50K in size. The figure also hints that
the parallelization level increases with the network size.

The rate of packet reception per wallclock second per rank is
shown in Figure 6. The rate is measured in the steady state
regime (for t > 100 simulation seconds), when all traffic
channels have activated. The curves are very similar for a
variety of N and L values, especially at low parallelization
levels. The scatter in Rx rate values increases for larger
number of CPUs.

Figure 6: Packet Rx rate per process per wallclock
second for selected runs.

Figure 7 shows the total packet Rx rate per wallclock sec-
ond (all ranks combined). For the majority of the runs, the
rate increases up to parallelization levels of ∼ 100 − 200
ranks, where it flattens out and starts decreasing, due to
inefficiencies of inter-rank synchronization and communica-
tion for large number of MPI ranks. The turning point for
the larger networks (run set A) occurs at higher core count
than for smaller networks (run set C). The largest networks
(run set B) appear to have the best Rx rates for the num-
ber of ranks greater than 16. The turning point for these
networks will occur at even larger parallelization levels.

Figure 8 shows the rate of advancement of simulated time
during the run as a function of wallclock time. The perfor-
mance is visibly worse (fewer simulated seconds processed
per same wallclock time interval) during the first 100 seconds
of the simulation, when channels activate. This is probably
due to the extra time needed for route discovery for nix-
vector routing algorithm.

3.2 Memory Scaling

Figure 7: Total packet Rx rate per wallclock second
for all runs.

Figure 8: Simulated time vs. wallclock time for
a series of N=50K, L=50K runs. Top to bottom,
the curves correspond to runs from 2 to 1024 MPI
cores, increasing by power of twos. The slope change
around 100 simulated seconds is due to all channels
becoming active.

Another performance metric we examine is the resident set
size (RSS) of the model, i.e. including both the code and
the data. The parameter was measured for each of the runs



in sets A, B, and C.

For each of the runs, the RSS was measured at 5 second in-
tervals of simulated time, to monitor its behavior as the run
progressed. Due to staggered nature of the channel activa-
tion in our simulations, the RSS is expected to grow with
simulated time, at least for the first 100 seconds of simula-
tion time, when the applications activate. (We did observe
a small increase in the RSS even beyond 100 seconds sim-
ulated time, which might be indicative of a small memory
leak). For consistency, as the reported metric in fits below,
we recorded the RSS number at the final simulation time
(200 seconds).

We’ve already seen that memory bounds play a significant
role in determining if a particular model can be run on a
given number of MPI ranks or compute nodes. In general,
while the memory usage of ns-3 is in general quite good,
[9] the memory scaling of the distributed implementation is
less than ideal, since each rank has to instantiate the global
topology. An accurate estimate of the memory requirements
would aid significantly in planning the parallel execution of
a given model.

To quantify the scaling of the RSS with respect to different
parameters, we fit the RSS data to a variety of models. The
dependent variables we consider are the number of model
nodes N , the number of active channels L, the number of
ranks C, and the average application load per rank L/C.
The node load for each rank is still N , as the entire network
topology is reproduced at each rank. Ideally, the memory
usage would scale with N/C + L/C, instead of N + L/C.
The fits below also include the constant term, to represent
the size of the ns-3 code in memory.

The fit of RSS footprint using all the independent variables
is as follows:

RSS(Kb) = (71142 ± 18420) +

(24.1 ± 0.2)N +

(10.3± 0.2)L−

(47.0± 69.0)C +

(10.1± 0.5)L/C, (1)

R2 = 0.9995

The fit quality is not very good, and some of the parame-
ter errors seem very large, suggesting that those variables
have small effect, so we tried to fit with smaller parame-
ter sets, if only to give approximate rules of thumb. (A
full ANOVA analysis to reject weak dependent parameters
seemed overkill.) The resulting fits are shown below:

RSS(Kb) = (71225 ± 46080) +

(24.0 ± 0.5)N +

(12.4± 0.5)L−

(113± 175)C, (2)

R2 = 0.9965

RSS(Kb) = (92995 ± 86410) +

(30.5 ± 0.6)N +

(21.0 ± 2.5)L/C, (3)

R2 = 0.9842

RSS(Kb) = (65242 ± 16260) +

(24.1 ± 0.1)N +

(10.3± 0.2)L+

(10.1 ± 0.5)L/C, (4)

R2 = 0.9994

Model-to-model, the fits display large variations in the value
of the free term, which also carries large uncertainty. Strictly
speaking, none of the fits is statistically significant, and
should be treated more as a guidance for the expected scal-
ing rather than firm statistical relationship. This is also the
reason we give several expressions for different combinations
of dependent variables.

The memory scaling work is still under active development.

4. CONCLUSIONS
We presented and analyzed performance metrics for the dis-
tributed ns-3 network simulator, including the packet Rx
rate and the resident set memory footprint size. We derived
several scaling relations for the memory footprint which can
be used for planning larger distributed network simulations.

The performance analysis suggests optimal parallelization
level at ∼ 100−200 ranks, depending on the size of the net-
work (larger networks can use a larger number of ranks effi-
ciently). Beyond that limit, the performance suffers due to
increased burden of inter-process synchronization and com-
munication.

One potential improvement for the distributed ns-3 network
simulator is to implement a more scalable parallelization ap-
proach, by removing the requirement that every rank instan-
tiates the global topology. A much more scalable solution
would only instantiate the rank-local nodes, and perhaps
ghost nodes for the endpoints of any cross-rank links em-
anating from the current rank. At the same time, there
will have to be a method to identify the remote receiving
node without knowing the remote rank topology, in order
to create and schedule the receive event correctly. In the
current implementation non-blocking receives are scheduled
for all other ranks. When receiving messages, the source
rank of the message is not used to determine which P2P
link is involved. Rather, the destination node (global) in-
dex is transmitted as part of the MPI message. Instead of
identifying the receiving node by global index, the MPI in-
terface should track which rank sent the message, and with
that one rank build a common picture of the shared P2P
links and end nodes. An alternative would be to add a glob-
ally unique identifier, independent of the current globally
sequential node Id, to each simulation node with a cross-



rank channel. Each cross-rank packet transmission would
then identify the receiving node global id.

This approach will also require implementation of a dis-
tributed routing algorithm. All current ns3 automatic rout-
ing algorithms (global and Nix-vector routing) ultimately
require access to the global topology. The need to carry the
global topology and global routing tables at each rank lim-
its the memory scalability. Removing this bottleneck will
require implementation of a distributed shortest path algo-
rithm, for example ∆-Stepping. [7]
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